International Summer School: Application of GIS and Remote Sensing in Biodiversity Habitat Conservation Organizers: Vina Eka Aristya (Indonesia), Han Ni Soe (Myanmar), Mabula Makemie (Tanzania), Maryory Velado (El Salvador), Marina Bossoukpe (Benin), Pius Wamala (Uganda) | Geographic Information System
and Remote Sensing Application in
Biodiversity Habitats Conservation | | Learning outcomes | Learning activities / Assignments | Basic learning materials | |--|---|--|---|--| | Day 1 | Principles of biodiversity
management and habitats
loss | Describe the key concepts of biodiversity conservation and habitat loss Identify and discuss various causes of habitat loss and best practices | Group discussion (5 participants in a group) Brainstorming (causes of habitat loss) Sharing experiences (talk about some situation in their own countries) | Handouts Readings materials: https://doi.org/10.1038/sj.embor.7400398 http://www.nature.com/doifinder/10.1038/nature11148 https://doi.org/10.1046/j.1523-1739.2002.00530.x | | | Excursion Program to
Karimunjawa National
Park | Explore and identify important threats to
biodiversity around the National Park | Discussion with the Park Management | Map (Location of National Park) https://en.wikipedia.org/wiki/Karimunjawa Leaflet on Karimunjawa http://www.indonesia- tourism.com/centraljava/karimunjawa.html | | Day 2 | Introduction to GIS and Remote Sensing concept | Define basic terms in geospatial technology Analyse the challenges and related issue of using technologies Use open source GIS & remote sensing software. | Silent reflections Brainstorming on the challenges of using the technology Downloading and installing QGIS and R software Hands-on practicals with QGis and USGS web interface and software. | Handouts Reading materials http://www.ai.soc.i.kyotou.ac.jp/field_en/english_textbook/Re moteSensing 1.pdf https://geogra.uah.es/patxi/gisweb/GISModule/GISTheory.pdf http://www.gdmc.nl/oosterom/PoRSHyperlinked.pdf https://qgis.org/en/site/ https://qgis.org/en/site/; https://www.r-project.org/ https://rstudio.com/ | | Day 3 | Application: Data acquisition and processing | Identify various sources of remote sensing data Describe key procedures in satellite data processing Use remote sensing software to extract meaningful information from satellite data | Access and download the open
source remote sensing data Atmospheric correction,
mosaicking, clipping,
classification, NDVI
calculation | https://www.usgs.gov/ https://www.esa.int/ESA/Our Missions Computers with relevant software:QGIS & R Karimunjawa datasets Satellite data Training data | | Day 4 | Post -classification analysis | Be able to test significance of results and
make meaningful deduction to support
decision making | Accuracy assessment,Change detection and statistical analysis | Computers with relevant software:QGIS & R | | Day 5 | Case-based project work | Apply GIS & RS skills to handle, analyse and communicate GIS & RS data Able to evaluate the product of their project in the working process | Spatial and temporal extent of
habitat loss in Karimunjawa
National Park | Computers with relevant software: QGIS & R ESRI Story Map Satellite data https://storymaps.arcgis.com/ |